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Macroscopic  equations for  the conservat ion  of heat  (or the m a s s  of a diffusing impuri ty)  
in a continuous medium containing dis t r ibuted pa r t i c l e s  of a d i spe r sed  phase  a r e  f o r m u -  
la ted neglect ing the ef fec t  of random fluctuations of the medium and pa r t i c Ies  by the 
t r a n s f e r  p r o c e s s .  The p rob lem of convect ive heat  conduction o r  diffusion n e a r  an i so -  
la ted par t i c le  is a l so  formula ted ,  the solution of which p e r m i t s  calculat ion of alI the 
p a r a m e t e r s  enter ing into the indicated equations.  This p rob lem has been solved in the 
p a r t i c u l a r  case  of smal l  Pecle t  numbers ,  which c h a r a c t e r i z e  heat  and m a s s  exchange 
in the vicini ty of a single pa r t i c le .  

1. In many  rea l  si tuations the spat ia l  scale  L of the t e m p e r a t u r e  o r  impur i ty  concentrat ion fields in 
a d i spe r sed  s y s t e m  signif icantly exceeds  the s y s t e m ' s  in ternal  s t ruc tu ra I  sca le  l (for example ,  the ave rage  
dis tance between adjacent  pa r t i c les  of the d i s p e r s e d p h a s e ) ,  and only the global "mac roscop i c "  c h a r a c t e r -  
i s t ics  of heat  o r  m a s s  t r a n s f e r  ove r  dis tances  comparab le  to L and signif icantly exceeding the indicated 
s t ruc tu ra l  sca le  l a r e  of fundamental in te res t .  It is convenient in such cases  to t r e a t  a d i spersed  sy s t em 
as the superpos i t ion  of severa l  coexist ing continua [11, each of which as c h a r a c t e r i z e d  by s epa ra t e  values 
of the ave rage  veloci ty ,  t e m p e r a t u r e ,  and so on; the var ia t ion of the l a t t e r  quanti t ies is descr ibed  by the 
cor responding  ave raged  conserva t ion  equations.  The immedia te  p rob lem evidently consis ts  of a r igorous  
der ivat ion of these  equat ions.  

The conserva t ion  equations of m a s s ,  momen tum,  and angular  momentum of continua imita t ing the 
phases  of a monod i s pe r s ed  suspens ion w e r e  der ived  in [2]. We apply below the methods developed in- [2] 
to the der ivat ion of the heat conserva t ion  equations in these  continua. These  equations will descr ibe  the 
heat  t r a n s f e r  in a compos i te  g ranu la r  ma te r i a l  in the p a r t i c u l a r  case  in which both phases  of the d i spersed  
medium a re  mot ion less .  It is c l e a r  that all the resu l t s  obtained for  the descr ip t ion  of heat  t r a n s f e r  a re  
a lso  appl icable  to the ana lys i s  of the p roce s s  of m a s s  t r a n s p o r t  of an impur i ty  diffusing in a d i spersed  
med ium.  

Le t  C (t, r) and T(t,  r) be the functions descr ib ing  the veloci ty and t e m p e r a t u r e  fields in a d i spe r sed  
s y s t e m ,  and le t  0(t, r) be a function euqal to unity at  points located  in the s y t e m ' s  continuous phase  and to 
ze ro  at points located  inside the p a r t i c l e s .  Le t  us define the ave r age  veloci t ies  v (t, r),  w(t, r) and t e m -  
p e r a t u r e s  r0(t, r) ,  ~'l(t, r) of the continuous and d i s p e r s e d  phases  in the following fashion, respec t ive ly :  

( C ( t , r §  , 
[% (t, r)J = e (t, r) b 

b (1.1) 
. / c  (t,  r + d,.' 

t~l (t, r) b 

Here  the in tegra t ion is c a r r i e d  out over  a smal l  physical  volume b, of the medium eontaining a suff i -  
eiently l a rge  number  of pa r t i c l e s  and whose cen te r  of g rav i ty  is located  at  the point r ,  and p(t, r) and 
e(t ,  r)  a r e  the volume eoncentra t ion of the d i spe r sed  phase  and the poros i ty  ("porousness")  of the sy s t em,  
which can be de te rmined  as  was done in [2] f rom 
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e(t,r)= +fO(t ,r  + r')dr' 
b 

p (t, r) : ~ / 3 : ~ a 3 n ( t ,  r) : i - -  e ( t ,  r) 
(1.2) 

w h e r e  nit,  r) is the countable  (numer ica l )  concen t r a t i on  of pa r t i c l e s  and a is the rad ius  of a p a r t i c l e .  

One can  r ep l ace  the vo lume  a v e r a g e  b ~ lb  3 by an a v e r a g e  o v e r  an a r b i t r a r i l y  o r i en t ed  s u r f a c e  
s ~ l b  2, which plays the ro le  of a sma l l  phys ica l  s u r f a c e .  

L e t  us f u r t h e r  d i s cus s  the c o n s e r v a t i o n  of heat  in a vo lume B >> b bounded by the s u r f a c e  S. The 
vo lume  and s u r f a c e  of all the p a r t i c l e  ins ide S a r e  denoted by B,  and S, .  We in t roduce  the symbols  b ,  
and s*  fo r  the p a r t i c l e s  ins ide  the s u r f a c e  s which bounds the smal l  phys ica l  volume b. 

The  loca l  hea t  p roduc t ion  p e r  unit  vo lume  is d e s c r i b e d  with the help of the funct ion H(t, r) which is 
def ined at points  occupied  both by the continuous and the d i s p e r s e d  phase s .  The local  equat ions  of  con -  
vec t ive  heat  conduct ion a r e  of the f o r m  

c~(O/Ot--CV)T:--VQ(O+H, Q ( ~ ) = - - ~ f i T  (i=0,4_) (1.3) 

H e r e  Q denotes  the flux of heat  g e n e r a t e d  by m o l e c u l a r  heat  conduct iv i ty  and c and h denote the  
spec i f i c  heat  capac i ty  and the coef f ic ien t  of m o l e c u l a r  heat  conduct iv i ty .  The index values  i = 0 and i = 1 
in Eqs .  (1.3) denote  h e r e  and be low the  cont inuous  and d i s p e r s e d  phases ,  r e s p e c t i v e l y .  The funct ion H(t, r)  m a y  
r e p r e s e n t  both ex te rna l  heat  s o u r c e s ,  which a r e  p r a c t i c a l l y  independent  of the t e m p e r a t u r e  field (for 
example ,  heat  g e n e r a t e d  by the v i scous  dis ipat ion of flow energy)  and s o u r c e s  whose  s t r eng th  is p r inc ipa l ly  
d e t e r m i n e d  by this  f ield (for example ,  heat  g e n e r a t e d  by chemica l  r eac t i ons ) .  In the l a t t e r  ca se  Eqs .  (1.3) 
m a y  be non l inea r .  

The  ba lance  equat ions  of the amount  of heat  in a d i s p e r s e d  s y s t e m  and in its continuous phase  ins ide 
B a r e  of  the f o r m  

O ' - [ - ! ( cTC+ - - i  Hdr= ~ cTdr Q) n dr 0 

z s . (1.4) 
O-~-icTOdrot + l  icTC+Q) Ondr +l  Q n d r - - f  H 0 d r : 0  

l~ S S~ B 

w h e r e  n denotes  the unit  v e c t o r  of the ou te r  no rma l  of the vo lumes  occupied  by the s y s t e m  o r  the continuous 
phase .  The  in t eg ra l s  o v e r  B and S in the s econd  re l a t ion  of (1.4) can  be r e p l a c e d  by in t eg ra l s  o v e r  B - B ,  
and o v e r  the p a r t  of the s u r f a c e  S which pa s se s  th rough  the cont inuous phase ,  r e spec t i ve ly .  

It is not  difficult  to show, as  was  done in [2], that  to an a c c u r a c y  to t e r m s  of the o r d e r  of N -I /3 ,  where  
N is the n u m b e r  of p a r t i c l e  in B, the equa t ions  a r e  of the f o r m  

iQ|lOdr-~-f Q n d r :  i Q n d r =  f q n d r  (1.5) 
S ~, S+Sj S+S. 

w h e r e  S* ~ is the su r f a c e  of all  pa r t i c l e s  ly ing  en t i r e ly  in B (i.e., not i n t e r s ec t i ng  S). In addit ion,  in a c c o r d -  
ance  with the method  in [2], we r e p r e s e n t  B and S as the supe rpos i t i on  of sma l l  phys ica l  volumes  b and 
s u r f a c e s  s,  and we c a r r y  out the in tegra t ion  in (1.4) and (1.5) in two s t a g e s -  f i r s t  we in tegra te  o v e r  the 
individual  b and s,  and then we add up the r e s u l t s .  T r e a t i n g  such expressions as in tegra l  sums and n e g l e c t -  
ing the r e su l t i ng  t e r m s  which a r e  quadra t i c  in the r andom deviat ion of loca l  quant i t ies  f r o m  the i r  a v e r a g e  
va lues  defined in (1.1) and (1.2), we get  

4 1  ( COET'O -~ ClpT1) dr "+- f icoS"~O v -~ c1P~lw)ndr -~-fqlld["---l ($ho + Lohi) dF = O 
B s s B (1 .6 )  

o-5-a ~j Cog'%dr -- l coe"covndr -~ t qn, dr + f (~. -- sho)dr = 0 
B S S B 

Here the quantities 

~ ? ( t , r ) = - - - ~ - ~ !  Qn'dr, q ( t , r ) =  Q(t,r+r')dr" 
3 sj b 

h 0 ( t, r) = ~ I 0 (t, r -,- ,") H (t, r + r ')  dr '  
b 

hi i t, r) --- 1 ' 1 [l - -  0 (t, r + r')] H ( t, r -~- r ') dr '  
b 

(1.7) 
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a re  introduced. 

The integration in the express ion for  r r) in (1.7) is ca r r i ed  out over  the surface of the j- th 
par t ic le ,  and the summation is over  all the part icles  in b; n' denotes the unit vec tor  of the outer  normal  
of the par t ic le .  It is c lear  that 

(t, r) -~ --  n (t, r) ~ (Q) n'dr (1.8) 

where the angular  brackets  denote an average over  the ensemble of par t ic les ,  and the integration is p e r -  
formed over  the surface of a single par t ic le .  

F rom Eqs. (1.2), (1.3), and (1.7) we obtain the following express ion for  the average heat flux q(t, r) 
assoc ia ted  with molecu la r  thermal  conduction: 

q ( t , r ) = - -  ~ ~ OT ;~1I 0"1' dr'l . t r 1 -b-'(~'Ob"b ~ /,r+r "dl''-~- . 0r ,,r+r' ]=--~o-~-)-~-It, i.+l.,dr'--(~,l--~o)T/,(',l')~(T)n'dr (1.9) 

Finally,  the functions h0(t,r) and hi(t, r) which a re  determined by averaging the function H(t, r), 
depends significantly on the specific form of this function. Below we will consider  these quantites as 
known. In the general case they may depend on the average  tempera tures  T0(t , r), and vl(t, r). 

We have from the f i r s t  relation of (1.6) the following differential equation for  heat t r ans fe r  in a 
d ispersed  medium: 

0/Ot (cos% + clPxl) + V (c0s%v + clptlw) ---- --  Vq + eh0 + ph, (1.10) 

A s imi l a r  equation for  the continuous phase follows from the second relation of (1.6), and the equation 
for  the dispersed phase is the difference between (1.10) and the heat t r ans fe r  equation in the continuous 
phase.  Thus, we get 

O/Ot (c0e%) + V (c0et0v) = -- Vq -- ~ + eho 
O/Ot (clptl) + V (clptlw) = * + ehl (1.11) 

Using the conservation equations of the mass  of the phases derived in [21, we also get from (1.10) and 
(1.11) 

CoS(cOlOr + vV) % + clp (OlOt + wV) ~1 = -- Vq + eh 0 + phi 
CoS (O/Ot + vV) t0 ----- --  Vq -- ~p + eh0 (1.12) 
clp (O/Ot + wV) ~1 = ~P + Phi 

It is c lear  that the f i r s t  equation of (1.12) is the sum of the other  two. 

Thus we a r r ive  at a model according to which a dispersed medium is represented  in the form of a 
superposi t ion of two continua having not only different velocities but different t empera tu res ;  the t r ans fe r  
of heat in these continua is descr ibed by the las t  two equations of (1.12), and the equations determining 
the i r  motion has been formulated in [2]. (We emphasize  that we are  talking only about a monodispersed 
sys tem;  in the general  case of a sys tem containing par t ic les  of var ious s izes the number of such continua 
may be larger . )  Equations (1.12) contain the unknown quantities r r) and q(t, r) which according to (1.8) 
and (1.9) can be determined from the average  tempera tures  and the heat flux at the surface of an individual 
pat r ic le .  The problem of determining them as functions or  functionals of the unknown var iables  in (1.12) 
and the physical pa ramete r s  is analogous in a sense to the problem of deriving the rheological equations 
of the state of a suspension, which is encountered in setting upi tseont inuum hydromechanics  and is dis-  
cussed in detail in [2, 3]. 

2. Following the general method [3], we formulate  an averaged equation charac ter iz ing  heat t r ans f e r  
in a continuous phase near  an isolated (test) par t ic le  whose solution will permi t  calculation of the average  
t empera tu re  and heat flux at the surface of the tes t  par t ic le  and, thereby,  calculation of r r) and q(t, r) 
from (1.8) and (1.9) and closure  of the sys tem of equations (1.12). Thus it is necessa ry  to introduce the 
concepts of an ensemble of possible spatial a r rangements  (configurations) of the par t ic les  of the d ispersed  
phase and of the procedures  for  averaging over  the ensemble.  Taking into account the fact  that the prop-  
er t ies  of an ensemble of configurations a re  elucidated in detail in [3], and have also been discussed in [4, 5] 
with application to the problem of the effective heat conductivity of composite granular  mater ia l s ,  we use 
below the mathematical  apparatus of averaging from [3-5] without special  stipulations. 
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We note here only the principal assumptions adopted below. In the f i r s t  place, the a r rangement  of 
the par t ic les  is assumed to be random (chaotic). Secondly, the condition of "relaxat ion of corre la t ions"  
is adopted, according to which the conditional averages ,  obtained by means of averaging over  the part icle  
distr ibution function on the condition that some specific point is occupied by the center  of the test  par t ic le ,  
tend to the appropriate  unconditional averages  upon removal from this point. Thirdly,  it is assumed that 
the average  t empera tu re  of the continuous phase at some point coincides approximately with the quantity 
der ivedby averaging the t empera tu re  only over  such configurations for  which the presence  of one of the 
par t ic les  ot this point would be possible .  The degree of validity of these assumptions for  mater ia ls  with 
s ta t ionary phases and for  moving suspensions,  with boundaries imposed on them, and also the possible 
ways of general iz ing the resul ts  derived on the basis of these assumptions are  discussed in detail in [3]. 

We will f i rs t  derive the equation describing heat t r ans fe r  in a continuous phase Won the average" ,  
using for  this purpose an unconditional average  over the ensemble,  lV[ultiplying Eq. (1.3) by the function 
0 (t, r) and averaging,  we obtain 

Co < 0 {O / Ot + CV) T> = -- V(OQ) + (qvo> + (0H> (2.1) 

Equations (2.1) contains the same physical information as does the analogous equation derived by 
averaging over  the volume, i.e, the second equation of (1.12). The condition that these equations agree  
amounts to the content of the ergodic condition, which is s imi lar ly  formulated in [3]. Averaging the indi- 
cated equations, we obtain the following relations linking the volume and ensemble averages :  

t_J_~ o1'1 (0(0/Ot + CV)T> = - - e ( 0 / 0 t + v V ) %  - V ( 0 Q )  + (QV0) =~0v b ,) Or It, r+r 'dr '  
b (2 ~ 

@ (~,1-)~o)V (n (~(T>n'dr)+nf)<Q>n'dr (OT> = ea-o, <OH>= eh o 

Here the definitions (1.8) and(1.9) were  used. 

Using the explicit express ion for  0(t, r), 

N N 
_ _  r ( 1 )  

O ( t , r ) = ~  r r(j) [ 8 ( l l " - - r O ) ] - - a ) = ~ ,  11'8(Ir--rO) t -  a) 
3=1 Ir--  j=l 

(2.3) 

where r(J) a re  the radius vectors  of the par t ic les '  centers ,  it is easy to derive an express ion for  < QV0 > 
at some point r in the form of an integral over  the possible positions of the center  of a physical part icle  in 
such a way that the point r lies on the par t i c le ' s  surface [6]. Resolving the integrandinto a se r ies  according 
to powers of the components of the vector  which connects the par t i c le ' s  center  with r ,  and integrating the 
se r ies  te rm by te rm we a r r ive  at an express ion for  < QV0 > in the form of distributed thermal  muItipoles.  
Thus heat t r ans f e r  in a continuous phase occupying the space between part icles can be formal ly  described 
as heat t ransfer  in some fictitious medium filling all the space and containing distributed thermal  sources ,  
dipoles and so on. 

We note that such a descript ion of the effect of part icles  on heat t ransfer  in a continuous phase is 
s imi l a r  in concept to the descript ion of the effect of par t ic les  on the motion of a liquid in the spaces between 
them which has been proposed in [3]. The multipole exposition in question was derived in another more  
phenomenologicat manner  in [4, 5], where only the "dipole approximation" was assumed,  however,  in which 
the effect of thermal  quadrupoles and multipoles of higher rank was neglected. The dipole approximation 
was also used in [7] in calculating the effective thermal  conductivity of grainy mater ia l s  with spheroidal 
inclusions.  We also note that the notion of a fictitious medium surrounding the test  par t ic le  was introduced 
ea r l i e r  on phenomenologicalgrounds.  There  is a review of the papers about this trend in [8]. 

The equation describing heat t ransfer  near a test  part icle with center  at the point r = 0 is derived 
just as (2.1) was if one uses conditional averaging only for this configurations of all the remaining particles 

which are compatible with the fact that the center of the test particle is situated at a specific point. Denot- 

ing such averaging by angular brackets, with a prime and neglecting as before, terms which are quadratic 
with respect to the fluctuations of the quantities relative to their average values, we obtained 

c o (<@> 'a / Ot + UV) <T>' = -- V <@Q>' + <QVOy + <OH>' (2.4) 

in the sys tem of coordinates assoc ia ted  with the center  of the test  par t ic le .  
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This equation is of the same type as has been discussed in [31, whereby one can consider  the quantity 
U = (0C)' which has been investigated in detail in[3], as a known function of the coordinates and the t ime.  
Conditional averages  of the form ( q~)' in (2.4) depend on r and are  t rans formed  into quantities c h a r a c t e r -  
ist ic of a pure phase on the surface of the test  part icle (i.e., at r = a) and into quantities specific to the 
fictitious medium introduced when r = 3a (compare with an analogous situation in [3]). 

Determination of the specific dependence of the quantities ( r  on r nea r  the surface of a tes t  part icle  
is very complicated, but it is evidently sufficient for pract ical  purposes to consider  two approximate models 
The f i r s t  of these is valid for sys tems of moderate  concentration up to p ~ 0.2-0.3. Within the f ramework 
of this model one can generally neglect  the existence of the l ayer  of abrupt  change in pa ramete r s  at the 
surface r = a, having simply set  < ~ ) '  = ( ~ ) .  As follows from the analysis  in [3], this corresponds to the 
neglect  of the effect of the nonoverlapping of par t ic les  of the dispersed phase.  Within the f ramework of the 
second model the l ayer  in question is approximated by a l aye r  a -< r -< 2a filled with a pure continuous 
phase.  Such an approximation appears  exact if one considers  the problem in the approximation in which 
only a finite number  of distributed thermal  multipoles is taken into account, as was done, for  example, in 
[4, 5, 7]. The phenomenological notion of such a l aye r  was introduced in [9]. 

In the f i rs t  case heat t r ans fe r  outside the test  par t ic le  is descr ibed actually by Eq. (2.1)o In the 
second case Eq. (2.1) is valid only for  r > 2a, and heat t r ans f e r  in the l aye r  a -< r -< 2a is governed by the 
usual equation of convective heat conductivity (1.3) for  a pure continuous phase.  The continuity conditions 
of t empera tu re  and heat flux should obviously by fulfilled on the surface  r = 2a. 

Heat t r ans fe r  inside the tes t  par t ic le  is described by the equation 

c,(O/Ot + WV) <T>' = )~IA <T>' -~ <H>', (H>'= hl (2.5) 

where W is the velocity produced by a possible rotation of the test  par t ic le .  Conditions of t empera ture  
and heat flux continuity a re  also imposed at the surface r = a.  ~ 

The problem formulated will be closed if we find an expression for the quantity -V < 0Q) + (QV0) ,  
which appears  in the equation of h e a t t r a n s f e r i n  a fictitious medium in the form of a function on functional 
of the unknown tempera tu re  <?) ' ( t ,  r) and T0(t, r). Using the p rob lem's  l inear i ty  and concepts completely 
analogous to those in [3], we present  

--  V <0Q> + < Qv0> = l [6 (~o) T (~) ((o, r) + X a ((o) AT(0 ~ (0), r)] e~o'do~ (2.6) 

where T0(W)(w, r) is the Four i e r  t r ans fo rm of the quantity ( T ) '  (t, r). The coefficients ha(w) and a(w) 
cha rac te r i ze  respect ively the "apparent" thermal  conductivity of the continuous phase and heat exchange 
between the phases [4, 5]. They should be determined a pos te r ior i  from the second condition of (2.2). 

The relat ion between ( T ) ' ( t ,  r) and "r0(t , I") is given by the express ion 

lim <T>' (t, r) = T0 (t, r) (2.7) 
r ~ o  

which definitely closes the problem of thermal  conductivity near  a test  par t ic le .  

Formfulat ion of the boundary condition (2.7) requires  some explanation. The functional ( T ) '  (t, r) 
differs significantly from the average  tempera ture  %(t, r) only a t d i s t a n c e s r - a  ~ l ~ a, from the test  
pa r t i c le ' s  surface  and pract ical ly  coincides with itwhen r - a  >> l ,  whereby in the region r - a  < l the quantity 
~0(t, 1") can be considered as approximately independent of r. Taking into account the adopted assumption 
L >> l and using the main idea of the method of coalesced asymptot ic  expansions, the quality of the quantities 
( T )  '(t,  r) and %(t, r) in the r e g i o n r - a  >> l can be replaced by the asymptot ic  relation (2.7) , which is 
imposed when r - a - - ~  ~. 

It follows from the form of Eq. (1.12) that for  a s teady-s ta te  p rocess  o f  heat t r ans fe r  in a s ta t ionary 
granular  mater ia l  it is convenient to consider  the single equation 

- -  V q - ~ h =  0, h =  eh 0 +  ph 1 (2o8) 

It is useful in this ease to introduce the ma te r i a l ' s  average  t empera tu re  

= e~0 + pT~ (2.9) 

and its effective thermal-conduct iv i ty  coefficient, defined as the coefficient of proport ionali ty between the 
average  heat flux q and the gradient  of the average  tempera ture  VZ~ Denoting this coefficient by X, we 
wri te  
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- -  V <OQ) + V <QV0) = XA <T>' (2.10) 

in p lace  of (2.6) in the c a s e  u n d e r  cons ide ra t ion .  

The  dependence  of k on the m a t e r i a l ' s  p a r a m e t e r s  is a l so  d e t e r m i n e d  f r o m  the second  r e l a t i on  of 
(2.2) a f t e r  so lu t ion  of the p rob l e m  of heat  conduct ion n e a r  a tes t  pa r t i c l e .  This  ve ry  p rob l em is d i s c u s s e d  
below f o r  i l lus t ra t ion ;  its so lut ion a l so  p e r m i t s  re f in ing  the e x p r e s s i o n  f o r  the ef fec t ive  t h e r m a l  conduc -  
t iv i ty  of g r a n u l a r  m a t e r i a l s  de r ived  in [4, 5]. 

3. On the bas i s  of  the r e su l t s  in Section 2 the p rob l em of s t e a d y - s t a t e  heat  conduct ion n e a r  a t e s t  
p a r t i c l e  of a m o d e r a t e l y  c o n c e n t r a t e d  m a t e r i a l  with s t a t i ona ry  phases  can be wr i t t en  in the f o r m  

AT = AT 1 = 0 ,  T = x  ( r -~  co) 
T = T1, ~.nVT = ~.lnVT1 (r : a) (3.1) 

The  a n g u l a r  b r a c k e t s  a r e  omi t t ed  fo r  s impl ic i ty  in the symbo l s  f o r  the independent  v a r i a b l e s ;  T and 
T1 in (3.1) r e p r e s e n t  the a v e r a g e  t e m p e r a t u r e  outs ide  and ins ide the t e s t  pa r t i c l e ,  r e s p e c t i v e l y ,  and the 
t e m p e r a t u r e  T(r) is defined in (2.9) and is t r e a t e d  he re  as a known funct ion.  We note that  the s a m e  p ro b l e m 
is encoun te r ed  f o r  a t e s t  p a r t i c l e  of a moving  suspens ion  if  the Pec le t  number ,  which c h a r a c t e r i z e s  heat  
exchange  with the t e s t  pa r t i c l e ,  is sma l l  and the heat  t r a n s f e r  p r o c e s s  is c lose  to s t e a d y - s t a t e  

We will r e p r e s e n t  T(r) in the f o r m  of an expansion in the sphe r i ca l  functions Yn(#,  ~)  whe re  ~ and 
(P a r e  the a n g u l a r  coo rd ina t e s  of the sphe r i ca l  coo rd ina t e  sy s t em~  

(r) = ~, A~r~Y~ (~, ~) (3.2) 
n 

and the A n a r e  c o n s i d e r e d  known coef f i c ien t s .  Solution of the p rob lem (3.1) and (3.2) is the f o r m  

r = ~ ( a ~ r  n -~ T~r-(~+l)) y~,  T1 = ~ ( ~ ) r ~ Y ,  (3.3) 
n 

The coef f ic ien ts  an ,  7 n  and ~n (1) a r e  d e t e r m i n e d  f r o m  the equat ions 

an = An,  an -~ "~na-(2n+1) = an(l) 

nan - -  (n -4- t) ?ha- (2n+l) ~ ha,(1) (3.4) 

One can see that  only the t e r m s  of (3.3) with n = 1 make  a cont r ibut ion  to the in t eg ra l s  o v e r  the 
su r f ace  of the tes t  p a r t i c l e  which f igure  in (2.2). T h e r e f o r e  it is suf f ic ien t  to c o n s i d e r  only the p a r t i c u l a r  
solut ion of the p rob l e m  which c o r r e s p o n d s  to the funct ion T(r) = E r ,  w h e r e  E is the g rad ien t  of the m a t e r i a l ' s  
a v e r a g e  t e m p e r a t u r e .  Such a solut ion is of the fo rm 

~ ~- 2~ Er, T1 : )~l + 2"-------~ 

w h e r e  ~ is the m a t e r i a l ' s  effect ive t he rm a l  conduct ivi ty  in t roduced  in (2.10). Using (1.9) and (3.5), we 
obtain 

f rom the s econd  re la t ion  of (2.2). 

3~ (~a --  ~0) 
q = - - ~ E = - - i ~ , o +  ~1+2~ PIE 

F r o m  this t he re  follows an equation fo r  k whose  solut ion is 

[~ = 1/4 {2--3 p - -  z ( l - -3p)  -}- [(2--3p - -  • (1--3p)) 2 -}- 8~]II~} 

(3.6) 

(3.7) 

It is not diff icult  to a l so  de r ive  a s y m p t o t i c  f o r m u l a s  val id  when • (for example ,  f o r  porous  
bodies) and when • - -  ~ (for example ,  fo r  p rope l l an t s  having low t h e r m a l  conduct iv i ty  and containing 
me ta l l i c  inc lus ions) .  In the second  ca se ,  the quant i ty  fl = k/~0 r e m a i n s  finite if p < 1 /3 ,  and it b e c o m e s  
infinite in p r o p o r t i o n  to z = ~l/~0 if p > 1 /3 .  The  l a t t e r  s i tua t ion is  c aused  b y t h e  fac t  tha t  when p is  l a r g e  
the model  under  cons ide ra t ion ,  va l id  only fo r  m o d e r a t e l y  concen t r a t ed  m a t e r i a l s ,  c ea se s  t o b e a p p l i e a b l e  
[4, 5]. The dependence of fl on u f rom (3.7) is shown in Fig .  1 as  the dashed l ines for  va r ious  values  of p. 

In p lace  of (3.1) we have 

A T =  AT, = A T 1 = 0  T ~  (r--~ oo) T =  T.,  ~nVT 

= %0nVT. (r : 2a) T.  : T1, ~0nVT, : ~.lnVTl(r : a) (3.8) 
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fo r  m a t e r i a l s  with a high concentrat ion of the d i spe r sed  phase .  

The solution of this p rob lem with T(r) = E r  was obtained in [4,5]. 
In place of (3.6) we obtain in the p re sen t  case  

q =:  - -  ~ ,E = - -  ko �9 )~ (7~,1 -t- 17~,o) -~- %0 (5)~x ~- 7 -~o)  I) E ( 3 . 9 )  

for  the quantity q. 

is 
The solution of the equation cor responding  to (3.9) for  fl = )'/~o 

= (7~ + i7) -~ {• (t ~- 18p) + 5--i8p - t  [(• (l ~- lSp) ~- 5 (3.10) 
--i8p) ~ ~- (7• -~ i7) (5u ~- 7)]'/,} 

The quantity fl f rom (3.10) r ema ins  finite for  any and p; its 
dependence on • and s is i l lus t ra ted  by the solid l ines in Fig. 1. 

Fo r  smal l  p and values  of z c lose  to unity Eqs.  (3.7) and (3.10) 
give p rac t i ca l ly  identical  r e su l t s ,  coinciding with the well-known 
Maxwell equation when p - -  0~ 

We note that the dependences of the effective the rma l  conduc- 
t ivi ty on p and ~, which follow f rom (3.7) and (3.10) differ  somewhat  
f rom the analogous dependences in [4, 5], which were  der ived within 
the f r a m e w o r k  of the dipole approximat ion ,  and can be cons idered  to 
be re f inements  of the l a t t e r .  

Equations (3.6) o r  (3.9) pe rm i t  closing Eq. (2.8), which desc r ibes  s t e a d y - s t a t e  t he rma l  conduction in 
a g ranu la r  m a t e r i a l .  In the genera l  case  in which, f i r s t  of al l ,  the p r o c e s s  is essent ia l ly  non - s t eady - s t a t e  
and, secondly,  the m a t e r i a l ' s  phases  a r e  moving,  whereby the Pec le t  n u m b e r  for  an individual par t ic le  is 
not smal l ,  i t  is n e c e s s a r y  t o s o l ve  the significantly m o r e  complex problem of convective heat  conduction in 
the vicini ty  of a t e s t  pa r t i c le  fo r  c losure  of the sy s t em (1.12) of m a c r o s c o p i c  heat  t r a n s f e r  equation. We 
emphas ize  that it is more  convenient in this case  to consider  the apparen t  t he rma l  conductivity ~a of a 
f ict i t ious medium [i.e.,  use  (2.6) but not (2o10)],but the effect ive the rma l  conductivity of the ma te r i a l  "as  
a whole" is genera l ly  devoid of physical  meaning.  

We note that in view of the analogy of the ma themat i ca l  formulat ions  of cor responding  p rob l ems  
[4, 5] ,Eqs.  (3.7) and (3.10) can be used not only fo r  calculat ing the effect ive the rma l  conductivity or  diffu- 
sion coeff icient  of an impur i ty  in a d i spe r sed  medium but a lso  fo r  de termining  the d ie lec t r ic  o r  magnet ic  
constants  and e lec t r i ca l  conductivity of d i spe r sed  m a t e r i a l s .  
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