HEAT AND MASS TRANSFER IN A DISPERSIVE MEDIUM

Yu. A. Buevich and Yu, A, Korneev UDC 536.24,01

Macroscopic equations for the conservation of heat (or the mass of a diffusing impurity)
in a continuous medium containing distributed particles of a dispersed phase are formu-
lated neglecting the effect of random fluctuations of the medium and particles by the
transfer process. The problem of convective heat conduction or diffusion near an iso-
lated particle is also formulated, the solution of which permits calculation of all the
parameters entering into the indicated equations., This problem has been solved in the
particular case of small Peclet numbers, which characterize heat and mass exchange

in the vicinity of a single particle.

1. In many real situations the spatial scale L of the temperature or impurity concentration fields in
a dispersed system significantly exceeds the system's internal structural scale ! (for example, the average
distance between adjacent particles of the dispersedphase), and only the global "macroscopic" character-
istics of heat or mass transfer over distances comparable to L and significantly exceeding the indicated
structural scale I are of fundamental interest. It is convenient in such cases to treat a dispersed system
as the superposition of several coexisting continua [1], each of which as characterized by separate values
of the average velocity, temperature, and so on; the variation of the latter quantities is described by the
corresponding averaged conservation equations. The immediate problem evidently consists of a rigorous
derivation of these equations.

The conservation equations of mass, momentum, and angular momentum of continua imitating the
phases of a monodispersed suspension were derived in [2]. We apply below the methods developed in- [2]
to the derivation of the heat conservation equations in these continua. These equations will describe the
heat transfer in a composite granular material in the particular case in which both phases of the dispersed
medium are motionless. I is clear that all the results obtained for the description of heat transfer are
also applicable to the analysis of the process of mass transport of an impurity diffusing in a dispersed
medium,

Let C (t, r) and T(t, r) be the functions describing the velocity and temperature fields in a dispersed
system, and let 6(t, r) be a function euqgal to unity at points located in the sytem's continuous phase and to
zero at points located inside the particles. Let us define the average velocities v {, r), w(t, r) and tem~-
peratures Ty(t, r), T1{t, r) of the continuous and dispersed phases in the following fashion, respectively:

V(t,l') 1{ ’ C(t’r+r,) B
lro(t,r)} s LG ){T(t,r T

w(, 1) . Ci,r+1) (L.
{ ’ }=,_1_.5[1—6(t,r+r’)]{ e }dr’
3

Ty (£, 1) p(tr)b T{,r+1r)

Here the integration is carried out over a small physical volume b, of the medium containing a suffi-
ciently large number of particles and whose center of gravity is located at the point r, and p(t, r) and
£(t, r) are the volume concentration of the dispersed phase and the porosity ("porousness") of the system,
which can be determined as was done in [2] from
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et,r) = 5-\0 1) dr’ (1.2)
b .

p,r)="3nabn (¢, x) =1 — ¢t r)

where nft, r) is the countable (numerical) concentration of particles and « is the radius of a particle,

One can replace the volume average b ~ lb by an average over an arbitrarily oriented surface
g ~ lb which plays the role of a small physical surface,

Let us further discuss the conservation of heat in a volume B> b bounded by the surface 8. The
volume and surface of all the particle inside S are denoted by Bx and S«. We introduce the symbols bx
and s* for the particles inside the surface s which bounds the small physical volume b,

The local heat production per unit volume is described with the help of the function H{t, r) which is
defined at points occupied both by the continuous and the dispersed phases. The local equations of con-
vective heat conduction are of the form

€ (0/0L -CWVYT = —VQW 4 H, Q(l): —ANT (i=0,1) (1‘3)

Here Q denotes the flux of heat generated by molecular heat conductivity and ¢ and A denote the
specific heat capacity and the coefficient of molecular heat conductivity., The index values i=0andi=1
in Egs. (1.3) denote here and below the continuous and dispersed phases, respectively. The function H(t, r) may
represent both external heat sources, which are practically independent of the temperature field (for
example, heat generated by the viscous disipation of flow energy) and sources whose strength is principally
determined by this field (for example, heat generated by chemical reactions). In the latter case Egs, (1.3)
may be nonlinear,

The balance equations of the amount of heat in a dispersed system and in its continuous phase inside
B are of the form

—a(at—Schl—lr\(cTL—'rQ)ndr—S Hdr=0
S0 § " (1.4)
)\ cTGdr—}—S(eTC—Q)Gndl + Qndr~g HOdr =0

B S S. B

where n denotes the unit vector of the outer normal of the volumes occupied by the system or the continuous
phase. The integrals over B and S in the second relation of (1.4) can be replaced by integrals over B-Bx
and over the part of the surface S which passes through the continuous phase, respectively,

It is not difficult to show, as was done in {21, that to an accuracy to terms of the order of N'l/s, where
N is the number of particle in B, the equations are of the form

SQilGdr +S Quodr = 5 Qadr = S Qndr (1.5)
5 £,

S+Sy s+s.

where S*' is the surface of all particles lying entirely in B (i.e., not intersecting S). In addition, in accord-
ance with the method in [2], we represent B and S as the superposition of small physical volumes b and
surfaces s, and we carry out the integration in (1.4) and (1.5) in two stages — first we integrate over the
individual b and s, and then we add up the results. Treating such expressions as integral sums and neglect~
ing the resulting terms which are quadratic in the random deviation of local quantities from their average
values defined in (1.1) and (1.2), we get

%\ (CoBTy + €10Ty) dr - S(Cosfov + ¢praw)ndr + Sqn dr — S (eho - ORy)dr = 0
B s 5 B
h

. , . (1.6)
WS CoeTodr - Scosrovn dr - S qudr + S (p — eho)dr =0

B 5 5

Here the quantities
1 1
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are introduced.

The integration in the expression for ¥, r) in (1.7) is carried out over the surface of the j-th
particle, and the summation is over all the particles in b; n' denotes the unit vector of the outer normal
of the particle. It is clear that

(¢, 1) = —n(tx) § (Qn'dr (L.8)
where the angular brackets denote an average over the ensemble of particles, and the integration is per-

formed over the surface of a single particle.

From Egs. {(1.2), (1.3),and (1.7) we obtain the following expression for the average heat flux q(t, r)
associated with molecular thermal conduction:

T ; 1 ¢ ar
t,r+r’dr ) =—h TbS or

q(t,r)=—%(xobgb o

’ ar
dr -+ 7\418 o
b*

dr’ — (b — M) n (¢, ) Ty w'dr (1,9)

t, r+r’ £, rir’

Finally, the functions hy®,r) and hy(t, r) which are determined by averaging the function H{t, r),
depends significantly on the specific form of this function., Below we will consider these quantites as
known. In the general case they may depend on the average temperatures Ty(t, r), and 7y(t, ).

We have from the first relation of (1.6) the following differential equation for heat transfer in a
dispersed medium:

0/ 8t (cyeTo + ¢3074) + V (co8ToV =+ €01, W) = — Vq -+ ek + phy (1.10)

A similar equation for the continuous phase follows from the second relation of (1.6), and the equation
for the dispersed phase is the difference between (1.10) and the heat transfer equation in the continuous
phase, Thus, we get

010t (coeTo) + V (cofToV) = — Vg — P + ghy
/0t (cio7y) + V (e,pt,) = P + €hy

Using the conservation equations of the mass of the phases derived in [2], we also get from (1.10) and
(1.11)

(1.11)

coe(8/0t + vV) 1y + c,p (8/8t + WV) 1, = — Vq + ehy + phy
ot (0/0t + vV) 1y = — Vq — ¢ + ek,
ey (0/0t + wWV) vy =} + phy

(1.12)

It is clear that the first equation of (1.12) is the sum of the other two.

Thus we arrive at a model according to which a dispersed medium is represented in the form of a
superposition of two continua having not only different velocities but different temperatures; the transfer
of heat in these continua is described by the last two equations of (1.12), and the equations determining
their motion has been formulated in [2]). (We emphasize that we are talking only about a monodispersed
system; in the general case of a system containing particles of various sizes the number of such continua
may be larger.) Equations (1.12) contain the unknown quantities ¥, r) and q(t, r) which according to (1.8)
and (1.9) can be determined from the average temperatures and the heat flux at the surface of an individual
patricle. The problem of determining them as functions or functionals of the unknown variables in (1,12)
and the physical parameters is analogous in a sense to the problem of deriving the rheological equations
of the state of a suspension, which is encountered in setting upits continuum hydromechanics and is dis-
cussed in detail in [2, 3].

2. Following the general method [3], we formulate an averaged equation characterizing heat transfer
in a continuous phase near an isolated (test) particle whose solution will permit calculation of the average
temperature and heat flux at the surface of the test particle and, thereby, calculation of (t, r) and q(t, r)
from (1.8) and (1.9) and closure of the system of equations (1.12), Thus it is necessary to introduce the
concepts of an ensemble of possible spatial arrangements (configurations) of the particles of the dispersed
phase and of the procedures for averaging over the ensemble. Taking into account the fact that the prop-
erties of an ensemble of configurations are elucidated in detail in (3], and have also been discussed in {4, 5]
with application to the problem of the effective heat conductivity of composite granular materials, we use
below the mathematical apparatus of averaging from [3-5] without special stipulations.
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We note here only the principal assumptions adopted below. In the first place, the arrangement of
the particles is assumed to be random (chaotic). Secondly, the condition of "relaxation of correlations”
is adopted, according to which the conditional averages, obtained by means of averaging over the particle
distribution function on the condition that some specific point is occupied by the center of the test particle,
tend to the appropriate unconditional averages upon removal from this point, Thirdly, it is assumed that
the average temperature of the continuous phase at some point coincides approximately with the quantity
derived by averaging the temperature only over such configurations for which the presence of one of the
particles ot this point would be possible, The degree of validity of these assumptions for materials with
stationary phases and for moving suspensions, with boundaries imposed on them, and also the possible
ways of generalizing the results derived on the basis of these assumptions are discussed in detail in [3],

We will first derive the equation describing heat transfer in a continuous phase "on the average",
using for this purpose an unconditional average over the ensemble, Multiplying Eq. (1.3) by the function
6(t, r) and averaging, we obtain

o (0 (9/0t+ CV) TD = — V<BQ) + <QVO) + <OH) (2.1)

Equations (2.1) contains the same physical information as does the analogous equation derived by
averaging over the volume, i.e, the second equation of (1.12), The condition that these equations agree
amounts to the content of the ergodic condition, which is similarly formulated in [3]. Averaging the indi-
cated equations, we obtain the following relations linking the volume and ensemble averages:

B0/t +CV)Ty = — (3 /6t + vV) Tp — V<OQ) + (QVB = A,V _H%L dr'
. r |, r+r’ (202)
4 o)V (n $Ton'dr) 4 n @y wdr BT = exy, OH = ehy
Here the definitions (1.8) and(1,9) were used.,
Using the explicit expression for ¢, r),
N By N
T '—l'“) ’
8, r)= I s(|r— @ —a)= > w8 (|r—r0]—q) 2.3)
=1 fr— r I j=1

where r(j) are the radius vectors of the particles' centers, it is easy to derive an expression for <QV0 >

at some point r in the form of an infegral over the possible positions of the center of a physical particle in
such a way that the point r lies on the particle's surface [6]. Resolving the integrandinto a series according
to powers of the components of the vector which connects the particle's center with r, and integrating the
series term by term we arrive at an expression for <QV# > in the form of distributed thermal multipoles.
Thus heat transfer in a continuous phase occupying the space hetween particles can be formally described
as heat transfer in some fictitious medium filling all the space and containing distributed thermal sources,
dipoles and so on.

We note that such a description of the effect of particles on heat transfer in a continuous phase is
similar in concept to the description of the effect of particles on the motion of a liquid in the spaces between
them which has been proposed in [3]. The multipole exposition in question was derived in another more
phenomenological manner in [4, 5], where only the "dipole approximation" was assumed, however, in which
the effect of thermal quadrupoles and multipoles of higher rank was neglected. The dipole approximation
was also used in [7] in calculating the effective thermal conductivity of grainy materials with spheroidal
inclusions. We also note that the notion of a fictitious medium surrounding the test particlie was introduced
earlier on phenomenologicalgrounds. Thereis a review of the papers about this trend in 8],

The equation describing heat transfer near a test particle with center at the point r = 0 is derived
just as (2.1) was if one uses conditional averaging only for this configurations of all the remaining particles
which are compatible with the fact that the center of the test particle is situated at a specific point. Denot-
ing such averaging by angular brackets, with a prime and neglecting as before, terms which are quadratic
with respect to the fluctuations of the quantities relative to their average values, we obtained

co (B "0 1 6t 4+ UV) (T = — V (BQ' + <QVOY’ + <BH)’ (2.4)

in the system of coordinates associated with the center of the fest particle.
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This equation is of the same type as has been discussed in (3], whereby one can consider the quantity
U= (9C)' which has been investigated in detail in{31, as a known function of the coordinates and the time.
Conditional averages of the form { ¢)' in (2.4) depend on r and are transformed into quantities character-
istic of a pure phase on the surface of the test particle (i.e., at r = a) and into quantities specific to the
fictitious medium introduced when r = 3a (compare with an analogous situation in (30.

Determination of the specific dependence of the quantities { ¥)' on r near the surface of a test particle
is very complicated, but it is evidently sufficient for practical purposes to consider two approximate models
The first of these is valid for systems of moderate concentration up to p ~0,2-0,3. Within the framework
of this model one can generally neglect the existence of the layer of abrupt change in parameters at the
surface r = a, having simply set { #)' = { ¢). As follows from the analysis in [3], this corresponds to the
neglect of the effect of the nonoverlapping of particles of the dispersed phase, Within the framework of the
second model the layer in question is approximated by a layer a = r =2a filled with a pure continuous
phase. Such an approximation appears exact if one considers the problem in the approximation in which
only a finite number of distributed thermal multipoles is taken into account, as was done, for example, in
[4, 5, 71. The phenomenological notion of such a layer was introduced in {9].

In the first case heat transfer outside the test particle is described actually by Eq. 2.1), In the
second case Eq. (2.1) is valid only for r > 2a, and heat transfer in the layer a = r = 2a is governed by the
usual equation of convective heat conductivity (1.3) for a pure continuous phase. The continuity conditions
of temperature and heat flux should obviously by fulfilled on the surface r = 2a,

Heat transfer inside the test particle is described by the equation
e (010t + WYY (TY = MALKTY + KHY, (HY =hy 2.5)
where W is the velocity produced by a possible rotation of the test particle. Conditions of temperature
and heat flux continuity are also imposed at the surface r =a."

The problem formulated will be closed if we find an expression for the quantity v {0Q) +{QVv) s
which appears in the equation of heattransferin a fictitious medium in the form of a function on functional
of the unknown temperature {T)'(t, r) and Ty(t, r). Using the problem's linearity and concepts completely
analogous to those in [3], we present

— V<OQ> +<QVBS = { [5(0) TS (0, r) + Ay (©) AT (0, 1)] d¥ido 2.6)

where To(w)(w, r) is the Fourier transform of the quantity (T)'(, r). The coefficients A3 (w) and o(w)
characterize respectively the "apparent” thermal conductivity of the continuous phase and heat exchange
between the phases [4, 5]. They should be determined a posteriori from the second condition of (2.2).

The relation between {T)'(t, r) and Ty, 1) is given by the expression
Lim (T (¢, r) = 7y (¢, 1) (2.7)

P00

which definitely closes the problem of thermal conductivity near a test particie.

Formfulation of the boundary condition (2.7) requires some explanation. The functional { T }'(t, r)
differs significantly from the average temperature Ty(t, r) only atdistancesr—a ~ I ~ a, from the test
particle's surface and practically coincides with itwhen r—a > [, whereby in the region r-a <[ the quantity
To(t, r) can be considered as approximately independent of r. Taking into account the adopted assumption
L > [ and using the main idea of the method of coalesced asymptotic expansions, the quality of the quantities
(TY'(t, r) and Tolt, r) in the regionr—a> I can be replaced by the asymptotic relation (2.7) , which is
imposed when r—a -~ «,

It follows from the form of Eq. (1.12) that for a steady-state process 'of heat transfer in a stationary
granular material it is convenient to consider the single equation

— Vg + k=0, h=chy+ ph 2.8)
It is useful in this case to introduce the material's average temperature
T = &1, + pTy 2.9)

and its effective thermal-conductivity coefficient, defined as the coefficient of proportionality between the
average heat flux g and the gradient of the average temperature V7, Denoting this coefficient by A, we

write
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— V(0Q) + V(QV8> = MA (TY (2.10)
in piace of (2.6) in the case under consideration.

The dependence of A on the material's parameters is also determined from the second relation of
{2.2) after solution of the problem of heat conduction near a test particle. This very problem is discussed
below for illustration; its solution also permits refining the expression for the effective thermal conduc-
tivity of granular materials derived in [4, 5].

3. On the basis of the results in Section 2 the problem of steady-state heat conduction near a test
particle of a moderately concentrated material with stationary phases can be written in the form

AT =AT, =0, T=1 (r— )
T =T, MVT = AnVT, (r = a) @.0)
The angular brackets are omitted for simplicity in the symbols for the independent variables; T and
T in (3.1) represent the average temperature outside and inside the test particle, respectively, and the
temperature T(r) is defined in (2.9) and is treated here as a known function. We note that the same problem
is encountered for a test particle of a moving suspension if the Peclet number, which characterizes heat
exchange with the test particle, is small and the heat transfer process is close to steady-state

We will represent 7(r) in the form of an expansion in the spherical functions Y,(#, ¢) where # and
¢ are the angular coordinates of the spherical coordinate system.

T(r) = D A" (B, 9) (3.2)

and the Ay are considered known coefficients. Solution of the problem (3.1) and (3.2) is the form
T = D (" 4 1) ¥, Ty = Doy, (3.3)
n n

The coefficients <y, Y and oy (1) are determined from the equations
On = An, 0 + Yot~ @ntl) = q, M

na, — (n —~}— ‘1) ’yna" @n+l) — nau(l) (3-4)

One can see that only the terms of (3.3) with n = 1 make a contribution to the integrals over the
surface of the test particle which figure in (2.2). Therefore it is sufficient to consider only the particular
solution of the problem which corresponds to the function T(r) = Er, where E is the gradient of the material's
average temperature. Such a solution is of the form

M—A [a\s ‘ 3%
I= [1 TR (T) ]Er’ Ii= g Br (3-5)
where A is the material's effective thermal conductivity introduced in (2.10). Using (1.9) and (3.5), we
obtain

T 3 (M — A
q=—AE=— [+ S0 o R (3.6)
from the second relation of (2.2).
From this there follows an equation for A whose solution is
A= Bhy, x=">2/h
B=1{2-3p—xn (1—-3p) + [(2—3p — % (1—3p))% + 8ul*#} (3.7

It is not difficult to also derive asymptotic formulas valid when * =0 (for example, for porous
bodies) and when * — « (for example, for propellants having low thermal conductivity and containing
metallic inclusions). In the second case, the quantity 8 = A/?xo remains finite if p < 1/3, and it becomes
infinite in proportion to » = A/ A if p > 1/8. The latter situationis causedby the fact that when pis large
the model under consideration, valid only for moderately concentrated materials, ceases tobe applicable
[4, 51. The dependence of B on % from (3.7) is shown in Fig. 1 as the dashed lines for various values of p.

In place of (3.1) we have
AT = AT, =AT,=0 T =1 (r— ) T = T,, VT

— AnVT, (r=2a) T, — Ty, AnVTy — AnVT, (r = a) 3.8)
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for materials with a high concentration of the dispersed phase.

The solution of this problem with T(r) = Er was obtained in [4,5].
In place of (3.6) we obtain in the present case

(3.9)

_ L 362, (K1~ Ao) Ao
=—ME= [7“0 T A T TTAe) T B Th) P] E

for the quantity q.

The solution of the equation corresponding to (3.9) for 8= /2,

is
B = (T + A1) ( (1 + 18p) -+ 5—18p -+ [ (1 -+ 169) + 5
A —180)* + (T + 17) (5% -+ DI 010

0 x|
% The quantity B from (3.10) remains finite for any and p; its
/ A
7

dependence on %, and s is illustrated by the solid lines in Fig, 1,

For small p and values of % close to unity Egs. (3.7) and (3.10)

a4 7 : ' give practically identical results, coinciding with the well-known
i /46 . . Maxwell equation when p — 0,
-, y i
/ 05 We note that the dependences of the effective thermal conduc-

tivity on p and %, which follow from (3.7) and (3.10) differ somewhat

from the analogous dependences in [4, 5], which were derived within
the framework of the dipole approximation, and can be considered to
be refinements of the latter.

Fig. 1

Equations (3.6) or (3.9) permit closing Eq. (2.8), which describes steady-state thermal conduction in
a granular material. In the general case in which, first of all, the process is essentially non-steady-state
and, secondly, the material's phases are moving, whereby the Peclet number for an individual particle is
not small, it is necessary tosolve the significantly more complex problem of convective heat conduction in
the vicinity of a test particle for closure of the system (1.12) of macroscopic heat transfer equation. We
emphasize that it is more convenient in this case to consider the apparent thermal conductivity A3 of a
fictitious medium [i.e., use (2.6) but not (2.10)], but the effective thermal conductivity of the material "as
a whole" is generally devoid of physical meaning.

We note that in view of the analogy of the mathematical formulations of corresponding problems
[4, 51,Eqgs, (3.7) and (3.10) can be used not only for calculating the effective thermal conductivity or diffu-
sion coefficient of an impurity in a dispersed medium but also for determining the dielectric or magnetic
constants and electrical conductivity of dispersed materials,
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